
Politecnico	di	Milano	

							

WRC'2019: Workshop on Reconfigurable Computing!
Valencia @ 21 Jan, 2019!

Marco D. Santambrogio !
<marco.santambrogio@polimi.it>!

Politecnico di Milano!

2.2 . | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI

The NECSTLab Multi-Faceted
Experience with AWS F1!

Teaching, Research, Framework and Application stack!

2	What This Talk Is All About!

3	What This Talk Is All About!

4	What This Talk Is All About!

5	What This Talk Is All About!

6	

Computing systems are getting…!

7	

little…!

Computing systems are getting…!

8	

little…! little+Big!

Computing systems are getting…!

9	

little…! little+Big!

little+Big and heterogeneous!

Computing systems are getting…!

Heterogeneous Complex Systems!
•  Ryft ONE!

–  Big Data infrastructure due to an FPGA-accellerated architecture!
–  http://www.ryft.com/!

•  IBM Power8!
–  Introducing the Coherent Accelerator Processor Interface (CAPI) port that is

layered on top of PCI Express 3.0!
–  http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html!

•  Microsoft Catapult!
–  Stratix V (Arria 10 FPGA)!
–  http://research.microsoft.com/en-us/projects/catapult/!

•  Amazon EC2 F1 Instances!
–  Xilinx UltraScale Plus FPGA!
–  https://aws.amazon.com/about-aws/whats-new/2017/04/amazon-ec2-f1-

instances-customizable-fpgas-for-hardware-acceleration-are-now-generally-
available/!

•  OpenPower Foundation!
–  http://openpowerfoundation.org/!

10	

							

12

13	

15	

16	

21	gennaio	2019	 Marco	D.	Santambrogio/	Politecnico	di	Milano	 17	

							

Research Challenge!

18	

							

20 EXTRA Consortium Proprietary

							

							

21	

							

!

Usability	

22	

							

Interac(vity	

23	

							

Modularity	

24	

25	

The proposed CAOS framework!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

26	

The proposed CAOS framework!

Architectural	
Templates	

()
OpenCL	

Streaming	

…	

()

…	

Computa8on	Model	 Technology	

SST	

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

27	

CAOS Frontend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

28	

CAOS Frontend – IR Generation!
•  Functions extraction and generation of the

application call graph!

•  Current implementation leverages Doxygen!

29	

.c	
.c	
.c	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

applica0on	 IR:	call	graph	+		
func0ons	descrip0on	

CAOS Frontend – applicability check!
•  Verifies the applicability of an architectural

template w.r.t.:!
–  Application!
–  System description!

30	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

IR	
Architectural	
template	1	

Architectural	
template	2	

Architectural	
template	3	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

HW	candidate	

CAOS Frontend – applicability check!
•  Runs the application against multiple user-

defined datasets!
•  For each functions collects:!

–  Self execution time !
–  Total execution time!
–  Function calls!

31	

IR	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

Datasets	

f1	

f2	

f3	

f6	

f4	

f5	

f7	

Profiled	IR	

Total	=	100%	
Self	=	2%	-	4%	

7-9	calls	…	

…	

CAOS Frontend – HW/SW Partitioning!
•  Identifies the subtree to accelerate for each

architectural template!
•  If needed, translate the identified code for

subsequent optimizations (e.g. C to MaxJ)!

32	

IR	

f1	

f2	

f3	

f6	

f4	

f5	

f7	Self	=	10%	

Self	=	2%	

Self	=	20%	

f1	

f2	

f3	

f6	

f4	

f5	

f7	Self	=	10%	

Self	=	2%	

Self	=	20%	

Work done in collaboration with!

CAOS Functions Optimization!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

33	

CAOS Functions Optimization
Static Code Analysis!

•  Retrieve metrics on the current implementation
for the candidate HW functions!

•  Metrics are architectural template dependent!
–  Produce / consume rate of kernels (Maxeler)!

–  Estimated module latency (SST)!

–  Computational intensity (OpenCL)!

34	

CAOS Functions Optimization
Resource Estimantion!

•  Estimate resource requirements for the entire
set of functions to accelerate in HW !

•  Multiple resource estimation modules:!
– Default HW estimation module (Vivado HLS based)!

•  Might require a high execution time!
•  Accurate estimation!

–  Artisan HW estimation module !
•  Operations count-based estimation !

–  Fast execution time!
–  Coarse grain estimation!
–  MaxJ code support!

35	

CAOS default implementation !
of HW estimation!

36	

Web	app	

Default	HW	esEmaEon	

Py
th
on

	st
ub

	

Dependencies	

Unzip	 libGlib	

libxrender1	 libboost	

libxrandr2	

polyFPGA	 Vivado	

libfreetype6	

REST	API	

Artisan HW estimation!

37	

Web	app	

HW	esEmaEon	implementaEon	

Py
th
on

	st
ub

	

Dependencies	

Unzip	 libGlib	

libxrender1	 libboost	

libxrandr2	

…	 ArEsan	

libfreetype6	

REST	API	

CAOS Backend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

38	

CAOS Backend!

__

__

Application
(C,		C++	OPENCL)

W
eb

 U
I

CA
O

S
Fl

ow
 M

an
ag

er

Frontend
IR generation – profiling –

templates applicability check
– HW/SW partitioning

Functions
Optimization

HW resource estimation –
static code analysis –

performance estimation –
code optimization / DSE

Backend
Runtime generation – function

synthesis – floorplanning –
bitstream generation

IR	gen.

profiling

…

HW	est.

DSE

…

Floorpl.

Bit.	gen.

…

…

…

<system>
…

</system>

Profiling
Datasets

System	
Description

1010
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

1 0 1 0
1 0 1 0
1
1 0 1 0
1 0 1 1
0 1 0

System	
runtime

FPGAs
bitstreams

SST	
MaxCompiler

Output	Genera-on	

39	

CAOS: OpenCL and SDAccel!
•  CAOS Frontend supports OpenCL code:!

–  Intermediate representation support!
–  Template applicability check for SDA!
– Code profiling through LTPV (OpenCL profiler)!
–  Function optimization:!

•  Static code analysis and HW resource estimation
within SDA!

–  Backend support for SDAccell!

</>	
</>	

40	

CAOS Backend for SDAccel!
SDAccel	generates	&	
provides:	
-  XCLBIN	containing	the	

bitstream	
-  OpenCL	Run1me	to	

manage	kernel	
execuEon		

CAOS	Integrates	SDAccel:	
-  IdenEfying	I/O	

Variables	
-  GeneraEng	a	specific	

OpenCL	Host	code	for	
the	applicaEon	

41	

42 EXTRA Consortium Proprietary

Hints on the problem…!

43	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraEon-centric	floorplanning	for	parEal	reconfiguraEon.	In	ARC,	
pages	13-25,	2012.	

44	

Objective function!
•  Cost function can be defined starting from the

variables and parameters of the MILP model!
!

•  Implemented metrics:!
–  Global wirelength measured using HPWL ()!
–  Regions perimeter ()!
–  Wasted resources ()!

45	

Heuristic-Optimal Floorplanner!

46	

Reconfigurable	regions	+	
Resource	requirements	 FPGA	 HeurisEc	

soluEon	

MILP	model	

MILP	Solver		
(Gurobi,	Cplex,	GLPK,	…)	

Improved	heurisEc	soluEon	

User-defined	linear	
ObjecEve	FuncEon	

Geometrical	constraints	

•  Non overlapping
guaranteed by the
geometrical constraints

Hints on the problem…!

47	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraEon-centric	floorplanning	for	parEal	reconfiguraEon.	In	ARC,	
pages	13-25,	2012.	

Hints on the problem…!
•  Optimal solution in 29s!

•  34% wasted frames
reduction!
–  No DSP and CLB wasted

by the Video Decoder RR!
–  No BRAM wasted by the

Signal Decoder RR!

•  Approximately same
wirelength!

48	

*
[*]	Vipin,	K.	and	Fahmy,	S.	A.:	Architecture-aware	reconfiguraEon-centric	floorplanning	for	parEal	reconfiguraEon.	In	ARC,	
pages	13-25,	2012.	

Evaluations!
[1, 2] Streaming Stencil Time-step (SST)!
[3] Pearson Correlation Coefficient, Asian Option Pricing!
[5] Protein Folding!
[4] Smith Waterman and Vessels Segmentation!

49	

TABLE I. EXPERIMENTAL RESULTS

Case Study Board Improvement wrt CPU
Performance Energy Efficiency

IV-A Virtex 7 3.68x 11.8x
IV-A Kintex 14.15x 45x
IV-B Virtex 7 1.61x 15.29x
IV-C Virtex 7 3.1x 2.2x

IV-D jacobi-2d Virtex 7 1.09x 12.9x
IV-D heat-3d Virtex 7 0.22x 2.46x

ISLs consists in the iterative update of each element of a multi-
dimensional array with weighted contributions from a subset
of its neighbors in both time and space[16].

In this case study the applications are written in C, while
the system description requires the code to be accelerated on a
Xilinx Virtex 7 FPGA connected via PCIe to the x64 host pro-
cessor. Since the computational kernels – i.e. the ISLs – within
the applications are already identified, profiling in the frontend
phase is skipped. The phase demanded to perform the architec-
tural templates applicability check extracts the code parts from
the functions identified by the application designer and tries to
derive the corresponding polyhedral representation[15], while
also checking for them to be ISLs. As in this case study these
steps are successfully performed, the architectural template
selected is then the SST technology[15, 16].

In the functions optimization component, for each iden-
tified ISL static code analysis is in charge of retrieving the
total number of time-steps, while HW resource estimation for
a single SST is produced by means of Vivado HLS reports.
The performance estimation is then performed employing an
analytical model[15] to derive the maximum lenght of SSTs
that can be enqueued in the resulting accelerator, taking into
account total amount of available resources.

The backend component then generates the scheduling
and the runtime support to load the ISLs accelerators when
needed during the execution of the application, and the PCIe
interface needed to perform the data exchange. HW synthesis,
floorplanning and bitstream generation are then performed by
means of Vivado IPI.

Table I provides performance and power efficiency im-
provements of the best implementation – i.e. the longest queue
of SSTs that it was possible to synthesize – for all the ISLs
analyzed, with respect to the CPU-only system, equipped
with an Intel Xeon E5 processor, where the ISLs have been
compiled using Pluto with diamond tiling[25], state of the art
optimization for the implementation of ISLs on CPU. In both
cases, overall power consumption was measured at the wall,
which means that the whole system power drain was taken
into account. Notice how we yield better power efficiency
in all cases (up to 12.9X), while raw performance shows an
improvement only in the case of jacobi-2d.

V. CONCLUSIONS

In this paper we presented the design flow of CAOS (CAD
as an Adaptive OpenPlatform Service), a platform designed
to provide a fully integrated development experience when
accelerating an application on reconfigurable hardware. The
framework has been conceived to automate or heavily assist
all the steps involved in the development flow, being able
to provide usability, modularity and interactivity. We then

validated the proposed design flow by analyzing four different
case studies, and showing how each of them flows through the
different framework phases. The final objective of this work is
to ultimately push the adoption of reconfigurable hardware in
HPC.

ACKNOWLEDGMENTS

The work is part of the EXTRA project. The EXTRA
project runs from September 2015 till August 2018 and
receives funding from the EU Horizon 2020 research and
innovation program under grant No 671653.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Computer Architecture (ISCA), 2011 38th Annual International
Symposium on. IEEE, 2011, pp. 365–376.

[2] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
and D. Buell, “The promise of high-performance reconfigurable
computing,” Computer, no. 2, pp. 69–76, 2008.

[3] D. Stroobandt, A. L. Varbanescu, C. B. Ciobanu, M. Al Kadi,
A. Brokalakis, G. Charitopoulos, T. Todman, X. Niu, D. Pnev-
matikatos, A. Kulkarni et al., “Extra: Towards the exploitation of
exascale technology for reconfigurable architectures,” in Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC),
2016 11th International Symposium on. IEEE, 2016, pp. 1–7.

[4] Xilinx Inc., “Xilinx developer zone.” [Online]. Available:
https://www.xilinx.com/products/design-tools.html

[5] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel
programming standard for heterogeneous computing systems,”
Computing in science & engineering, vol. 12, no. 1-3, pp. 66–
73, 2010.

[6] Topic Embedded Products, “Dynamic process loader -
dyplo.” [Online]. Available: https://topicembeddedproducts.
com/products/dyplo/

[7] J. B. Dennis, “Data flow supercomputers,” Computer, vol. 13,
no. 11, pp. 48–56, Nov. 1980. [Online]. Available: http:
//dx.doi.org/10.1109/MC.1980.1653418

[8] Maxeler Technologies, “Maxeler technologies website.”
[Online]. Available: http://maxeler.com/#/

[9] A. Panella, M. D. Santambrogio, F. Redaelli, F. Cancare, and
D. Sciuto, “A design workflow for dynamically reconfigurable
multi-fpga systems,” in 2010 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip, Sept 2010, pp. 414–
419.

[10] M. D. Santambrogio, D. Pnevmatikatos, K. Papadimitriou, C. Pi-
lato, G. Gaydadjiev, D. Stroobandt, T. Davidson, T. Becker,
T. Todman, W. Luk, A. Bonetto, A. Cazzaniga, G. C. Durelli,
and D. Sciuto, “Smart technologies for effective reconfigura-
tion: The faster approach,” in 7th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), July 2012, pp. 1–7.

[11] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen,
S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan,
“Darkroom: Compiling high-level image processing code
into hardware pipelines,” ACM Trans. Graph., vol. 33,
no. 4, pp. 144:1–144:11, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601174

[12] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio,
I. Gelado, M. Shafiq, E. Morancho, N. Navarro, E. Ayguade,
J. M. Cela, and M. Valero, “Assessing accelerator-based hpc
reverse time migration,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 1, pp. 147–162, Jan 2011.

[13] C. Tomas, L. Cazzola, D. Oriato, O. Pell, D. Theis,
G. Satta, and E. Bonomi, “Acceleration of the anisotropic

[1]
[2]

[3]
[5]
[4]
[4]

[*] intel Xeon E5 1410
32 GB RAM

[*]	

50 EXTRA Consortium Proprietary

Slide title!

text

Some Applicative Domains !
for FPGA Acceleration!

•  Image and Video Processing!
•  Security!
•  Machine Learning!
•  Genomics!
•  Financial Analytics!
•  Big Data Analytics!

51	

Who Victor is!

52	

How a Genetic Test !
Changed Victor’s Life!

53	

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

54	

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

55	

•  Each individual DNA provides huge amount of
data!

Open Challenges!
•  It is necessary to keep-up with continuous

development of biological research !

56	

•  Each individual DNA provides huge amount of
data!

•  To produce a tailor-made drug, for each DNA:!

Personalized Medicine Today!

•  FPGA-based acceleration!
–  optimal ratio performance/power consumption!
–  reconfigurability!

•  Possibility to use pre-accelerated biological
pipelines!

•  Available on-site or for AWS cloud!

57	

HUGenomics!

58	

An advanced support for genomic
research that, !
!
by means of reconfigurable hardware
accelerators,!
!
is capable of delivering massive
performance!
for fast-changing algorithms, letting
researchers !
!
to focus on delivering best-in-class
results in the least amount of time!

Rationale Behind HUG!

59	

NO hardware competences required

Possibility to handle massive amount of data

Possibility to integrate custom code

Reduction in research time

Genome Assembly!

60	

up to	

658x

Performance Improvement

Smith-Waterman
(Software)

30h

Smith-Waterman
(HUGenomics)

2,5 mins

up to	

2160x

Performance Improvement

Haplotype Caller - PairHMM

(Software)

10h

Haplotype Caller - PairHMM

(HUGenomics)

17s

Genomics HW Pipeline!

61	

PIPELINE
CREATION

DATA
UPLOAD

PROCESSING DATA
VISUALIZATION

HUG has exactly
what I need!

YESLINE

Custom Code Integration!

62	

HETEROGENEOUS ARCHITECTURE

HUG

I’d like to integrate
my own algorithm

RAW READ CONTIGGING SCAFFOLDING RE-SCAFFOLDING ANNOTATION

Genomics HW Pipeline!

63	

FAST
PROTOTYPING

CUSTOM HARDWARE
ALGORITHM

PIPELINE CREATION
OR INTEGRATION DATA

UPLOAD
PROCESSING DATA

VISUALIZATION

YESLINE

NOLINE

Is the algorithm
available on HUG?

Genomics HW Pipeline!

64	

FAST
PROTOTYPING

CUSTOM HARDWARE
ALGORITHM

PIPELINE CREATION
OR INTEGRATION DATA

UPLOAD
PROCESSING DATA

VISUALIZATION

YESLINE

NOLINE

Is the algorithm
available on HUG?

Benefits of the AWS F1 Cloud
Compute Platform!

•  Makes FPGA acceleration available to a large
community of developers, and to millions of
potential AWS users!

•  Provides dedicated and large amounts of FPGA
logic with elasticity to scale to multiple FPGAs!

•  Simplifies the development process by providing
cloud-based FPGA development tools!

•  Provides a Marketplace for FPGA applications,
giving more choice, secure and easy access to
millions of AWS users!

65	

66	

Bringing the Right People Together!

67	

							

Bringing the Right People Together!

68	

69	

							

70	

							

71

72

73

PC/Laptop!

74

Mobile!

75	

Feb 2019!

76

78

What We Have!

What We Have!

What We Have!

A worldwide class to share
knowledge and preview game
changing technologies

What We Have!

A worldwide class to share
knowledge and preview game
changing technologies

CAD for efficient HW/SW
solutions for high performance
FPGA-based systems

What We Have!

CAD for efficient HW/SW
solutions for high performance
FPGA-based systems

A worldwide class to share
knowledge and preview game
changing technologies

An advanced support to
genomic research by
heterogeneous HW architectures

What We Have!

An advanced support to
genomic research by
heterogeneous HW architectures

A worldwide class to share
knowledge and preview game
changing technologies

CAD for efficient HW/SW
solutions for high performance
FPGA-based systems

What We Have!

CAD for efficient HW/SW
solutions for high performance
FPGA-based systems

An advanced support to
genomic research by
heterogeneous HW architectures

A worldwide class to share
knowledge and preview game
changing technologies

What We Have!

CAD for efficient HW/SW
solutions for high performance
FPGA-based systems

A worldwide class to share
knowledge and preview game
changing technologies

An advanced support to
genomic research by
heterogeneous HW architectures

What We Have!

heterogeneous HW architectures

 preview game
changing technologies

CAD for

 high performance

FPGA-based systems

What We Have!

heterogeneous HW architectures

 preview game
changing technologies

CAD for

 high performance

FPGA-based systems

hips://www.anandtech.com/show/12509/xilinx-announces-project-everest-fpga-soc-hybrid	

What We Have!

90	

hips://www.extrahpc.eu/	

2.2 . | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI

!

91	

Politecnico	di	Milano	

							

Marco D. Santambrogio !
<marco.santambrogio@polimi.it>!

Politecnico di Milano!

2.2 . | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI

The NECSTLab Multi-Faceted
Experience with AWS F1!

Teaching, Research, Framework and Application stack!

